Praveen Paidi

praveenpaidi4@gmail.com I www.linkedin.com/in/praveen-paidi-862591153 I https://praveenpaidi.github.io/Website/

Determined and technically shrewd Robotics Master's Student with Bachelor's in Mechanical engineering equipped with 2 years of industry expertise and looking for full time and internship opportunities.

EDUCATION

Masters of Science in Robotics and Autonomous systems Arizona State University, Tempe, Arizona

Bachelor of Technology in Mechanical Engineering

National Institute of Technology Jalandhar, Punjab, India

SKILLS & SOFTWARE

- Languages and Firmware: Python, C/C++, TensorFlow, Pytorch, ROS, MATLAB, Gazebo, Simulink, LINUX, Open CV, Arduino.
- Coursework: Machine Learning, Deep learning, Computer vision, Controls of Robotics, Motion Planning, Pattern Recognition.

WORK EXPERIENCE

Research Volunteer: https://github.com/PraveenPaidi/Point Cloud NERF

May 2023 - Present

Aug 2022 - May 2024

CGPA: 4.0/4.0 **2016 - 2020**

CGPA: 7.52/10

- Implemented a pipeline outperforming NeRF using point cloud based NeRF by including depth loss function.
- Implemented pipeline of ResNet and VGGNet for image processing and trained on CIFAR 10 datatset.
- Implementation of ICP point cloud registration, pruning techniques and developing neural point clouds.
- Improved density of point cloud using Recurrent Neural Networks and

Testing Engineer R&D I Suzuki MotoCorp - Maruti Suzuki India Ltd I

July 2020 to July 2022

- Identified anomaly case in testing by training on imbalanced data with 5% minority using logistic regression.
- Implemented XG Boost, SVM, Neural Networks to find the best F1 score of 0.71 on testing dataset.
- Developed real time test data graph generation of Measured data and curve fitting using recursive least squares.
- Applied Kalman filter to predict the performance factors of engine in accelerated aging testing
- Developed Automation tests for the Engine validation using Python and VBA in PUMA alongside Bosch AVL Team.
- Measured length by rotary encoders and calibrated to Arduino code to deliver tested products with budget cut by 40% for customer needs by benchmarking market specifications.
- Managed to develop timer by LDR and Laser setup for calculation of vehicle acceleration with the Arduino RS 232.
- Simulated CVT in MATLAB for optimal acceleration by reducing lag of 0.5 sec and validated for different terrains.
- Implemented feature generation for more real time test data for predicting failure cases in real time production.

PROJECTS

Face Mask Detection using Neural Networks: (https://praveenpaidi.github.io/Robotics Deployment/)

- Real time face mask detection using Deep neural networks by OAK D camera and movement of bot using ROS nodes.
- Created dataset of 2000 images using stereo camera and developed pipeline for feature generation of the face mask in frame.
- Deployed Python code using ROS nodes for movement of bot towards goal after face detection with latency below 1 sec.
- Published velocity and pose of mask using publisher node to subscriber and real time topic subscription for bounding box.

Swarm Navigation: https://github.com/PraveenPaidi/Swarm Robot Navigation

- Developed swarm robot navigation technique for surveillance using utility maps and correlation density mapping.
- Developed A-star and dijkstra algorithms for path shortest path generation from maze start to end and weighted branches.
- Developed trade-off between cost and time, negotiated dynamic obstacles by shape navigation and Artificial potential fields.

Turtle Bot 4: https://github.com/PraveenPaidi/Turtlebot4

- Collected IMU data and implemented Kalman filter and FIR filter for the velocity and acceleration prediction.
- Calibrated camera of turtle Bot using intrinsic and extrinsic parameters by Zhang's method and created surrounding map.
- Implemented Probability edge detection algorithm from scratch resulting better than canny and Sobel detectors.

Semantic Segmentation: https://github.com/PraveenPaidi/Semantic-Segmentation

- Fused image data and depth data to convert into 3D point cloud and classified the images clustering algorithms.
- Performed semantic segmentation to detect the objects after down sampling and noise reduction using ransac by training data.
- Implemented color thresholding and made a map of traversable path for bot and created whole map in robot perspective.

State estimation: https://github.com/PraveenPaidi/State Estimation-and-Localization

- Estimated position and velocity of the vehicle using LIDAR data, IMU and GNSS by implementing Kalman and EKF.
- State estimation of robot arms of 6 DOF using control using extended and ensemble Kalman filters.
- Developed code for robotics arm to traverse in a cluttered environment and avoiding static obstacles.
- Implemented PID control for the mambo parrot drone to navigate and follow the line follower and taking turns.
- Implemented open loop, PID, LQR control for control of position of planar drone.

Pattern Recognition: https://github.com/PraveenPaidi/Machine Vision Pattern Recognition

- Implemented color thresholding and made a map of traversable path for bot and created whole map in robot perspective.
- Implemented image stitching using Harris corners, SIFT, feature matching and warped using alpha blending.
- Developed Multi resolution blending for features using Laplacian and Gaussian pyramid.
- Implemented bundle adjustment for minimizing the reprojection error for the 3D image reconstruction below 0.5.